disubstituted isoquinolines

A lan Ford, Ekkehard Sinn and Simon W oodward*
School of C hemistry, U niversity of H ull, Kingston-upon-H ull HU6 7RX, UK

Abstract

U nder $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalysis, coupling of arylboronic acids to the 1-position of 1,3-dichloroisoquinoline takes place, leading exclusively to 1 -aryl-3-chloroisoquinolines. This regiochemistry is demonstrated by the crystal structure of 3-chloro-1-(8-methoxy-1-naphthyl)isoquinoline. The 3-chloro group may be modified by nickel-catalysed reaction with G rignard reagents or direct nucleophilic displacement with LiSC H ${ }_{2} \mathrm{Ph}$. A ttempted lithiation of the 3-position is not successful (either deprotonation or complex reactivity results). U nder zinc reduction in the presence of $\mathrm{NiCl}_{2}-\mathrm{PPh}_{3}$ and N al , the 1-aryl-3chloroisoquinolines furnish 3,3'-biisoquinolines in good yield.

Introduction

N, N-Chelates, especially $2,2^{\prime}$-bipyridyl (bpy) and its analogues, are ubiquitous ligands as additives and modifiers in organic reactions mediated by transition metals. ${ }^{1}$ For example, although the combination of $\mathrm{RuCl}_{3}-\mathrm{NaIO}_{4}$ is normally a powerful system for the cleavage of $\mathrm{C}=\mathrm{C}$ bonds, ${ }^{2}$ in the presence of bpy the nature of the oxidant is moderated and useful epoxidation chemistry results. ${ }^{3,4}$ We are interested in the preparation of new bpy-analogues for use in a wide range of transition metal promoted chemistry, including related rutheniumcatalysed oxidations. ${ }^{5,6}$ This paper addresses the synthesis of new N, N-chelates based on isoquinolines, whereby the steric and electronic environment about a coordinated transition metal can be easily perturbed by simple substitutions to the basic core structure. Such approaches are useful as they allow the 'tuning' of rates and selectivities of metal catalysts when optimising the efficiency of individual catalytic systems. In addition a number of different approaches to the synthesis of 1,3diarylisoquinolines have been developed.

Results and discussion

1,3-Selective cross-coupling reactions

Simple canonical structure arguments indicate that the 1-chloro substituent of 1,3 -dichloroisoquinoline ${ }^{7-9}$ should be significantly more reactive than its 3 -position counterpart. This differential reactivity may be exploited in palladiumcatalysed cross-coupling of 1,3 -dichloroisoquinoline with arylboronic acids (Suzuki reactions). Regiochemistry in palladiumcatalysed reactions of polyhalo substrates is determined at the moment of oxidative addition. We reasoned that the rate of oxidative addition of the isoquinoline's benzylic 1-chloro group would greatly exceed that of the 3-chloro group, leading to high regioselectivity regardless of the steric requirements of the nucleophilic coupling partner. When 1,3-dichloroisoquinoline 1 reacts with phenylboronic acid only the 1-substituted product 2 is formed, none of the 3 -substituted regioisomer is isolated from the reaction mixture (Scheme 1). Optimal conditions for this reaction are attained if 3 equiv. of CsF promoter are used. ${ }^{10}$ In these cases the reactions are faster and cleaner than those with other bases [$5-6 \mathrm{~h}$ with CsF vs. overnight with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or $\mathrm{Ba}(\mathrm{OH})_{2}$]. U nder fluoride promotion even the highly hindered 8 -methoxy-1-naphthylboronic acid couples in good yield (80%). It is noteworthy that a reasonable barrier to racemisation is expected in atropisomeric 8 , whereas 1 -naphthyl-

Scheme 1 Reagents and conditions: i, $\mathrm{ArB}(\mathrm{OH})_{2}, \mathrm{CsF}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(3$ mol\%), DME, 6 h
isoquinoline racemises freely. ${ }^{11}$ This 1,3 -isoquinoline coupling selectivity appears not to have been demonstrated before. Selective mono-coupling reactions normally rely on the presence of $\mathrm{C}-1 / \mathrm{C}-\mathrm{Br}$ or $\mathrm{C}-\mathrm{Br} / \mathrm{C}-\mathrm{OSO}_{3} \mathrm{CF}_{3}$ bonds for differential reactivity. ${ }^{12} \mathrm{M}$ olecules similar to 2-8 are known but in these cases there are no regiochemical issues to be addressed. ${ }^{13,14}$ Two reports of rate differences in the oxidative addition of polyhalogenoheterocycles have appeared very recently during the course of our studies. Reactions at the 6 -position of $2,6-$ dichloropurines with organotin or organozinc reagents under catalysis by $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ sources are known. ${ }^{15}$ 2,4-D ichloroquinazoline is electronically different at the 2 - and 4 -positions; the 4-position is more electrophilic. U nder $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalysis, $A^{\prime} \mathrm{R}_{3}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Bu}^{i}\right)$ couples first to the benzylic 4-position in refluxing THF or 1,2-dichloroethane. Subsequent addition of more AIR ${ }_{3}$ results in coupling to the 2 -position. ${ }^{16}$
The regiochemistry of the isoquinoline in Scheme 1 is confirmed by a number of techniques. Complete assignment of the isoquinoline protons of all compounds is possible at 600 M Hz . In particular, the 2D NOESY spectrum of 3 shows a clear cross-peak for the o-tolyl proton signal and that due to $\mathrm{H}-\mathrm{C}(8)$ on the isoquinoline. Degradation of 6 by stoichiometric amounts of $\mathrm{PdCl}_{2}-\mathrm{NaBH}_{4}$ results in material with ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectra identical to the known 1-(2-methoxynaphthyl)isoquinoline ${ }^{13}$ In the case of 8 the atom connectivity was further confirmed by the results of a crystallographic study (Fig. 1). A lthough all the arylboronic acids tried were successful, there is one limitation on this selective coupling strategy: vinylboronic acids do not participate in the reactions, as $\mathrm{Me} \mathrm{e}_{2} \mathrm{C}=\mathrm{CHB}(\mathrm{OH})_{2}$ fails to couple with 1 when the coupling is promoted with
$\mathrm{Na}_{2} \mathrm{CO}_{3}$. A nalogous reactions using CsF have not been carried out.

D isubstituted isoquinolines

Despite their simple constitution, 1,3-disubstituted isoquinolines are not always easily prepared by traditional methods. Often several steps are required to reach the desired target. Several modifications of the new 1-aryl-3-chloroisoquinolines are possible leading to efficient syntheses of new 1,3-

Fig. 1 An ORTEP view of one of the two identical 8 molecules in the unit cell. Selected bond distances: $\mathrm{Cl}(1)-\mathrm{C}(2) 1.742(4), \mathrm{N}(1)-\mathrm{C}(1)$ 1.318(5), $N(1)-C(2) 1.343(4), O(1)-C(19) 1.367 \AA$; dihedral angle: $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(11) 94.8^{\circ}$
disubstituted species. This chemistry is summarised in Scheme 2. The 3-chloro substituent is resistant to transmetallation with BuLi or But i; only deprotonation at H-C(4) results. This may be achieved cleanly with LiN $\mathrm{Pr}_{2}{ }_{2}$ at $0^{\circ} \mathrm{C}$, or with BuLi•TM EDA or lithium 2,2,6,6-tetramethylpiperidine at $-78{ }^{\circ} \mathrm{C}$ in THF. Deuteriation of the resulting anion leads to 9 or 10. Partial transmetallation of the 3-chloro group may be effected in some cases with $\mathrm{LiC}_{10} \mathrm{H}_{8}$, followed by a proton quench. For example, rapid addition of 8 to 2.5 equiv. of $\mathrm{LiC}_{10} \mathrm{H}_{8}$ at $-70^{\circ} \mathrm{C}$ yields some 11, after $\mathrm{D}_{2} \mathrm{O}$ quench. H owever, this reaction is not synthetically useful as variable quantities of uncharacterised reduction products are also formed; use of electrophiles other than H^{+}led only to 11.
Reaction of the 1-aryl-3-chloroisoquinolines with G rignard reagents at room temperature affords entry to the mixed isoquinolines 12-15. These reactions are best carried out using catalysis with $10 \mathrm{~mol} \% \mathrm{NiCl}_{2}$ (dppf) [dppf=1,1'-bis(diphenylphosphino)ferrocene], as far higher reaction rates are attained than with other chelate phosphine nickel catalysts. For example, compound $\mathbf{1 2}$ is isolated in 78% within 1 h using $\mathrm{NiCl}_{2}(\mathrm{dppf})$, while 70 h are required for equivalent preparations of 13-14 using $\mathrm{NiCl}_{2}(\mathrm{dppp}) \quad[\mathrm{dppf}=1,3$-bis(diphenylphosphino)propane] (84 and 75% yield respectively). As an alternative to nickel catalysis, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ may be used to promote a second $\operatorname{ArB}(\mathrm{OH})_{2}$ coupling, as in the synthesis of 16-18. Forcing conditions are necessary as the 3-chloro substituent is only reactive in D M F at $100^{\circ} \mathrm{C}$. The heterocyclic systems 19 (61%), 20 (94\%) and 21 (80%) are accessible via Stille-type coupling with $2-\left(\mathrm{M}_{3} \mathrm{Sn}\right) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$. These reactions are rather sluggish and a rather large catalyst loading $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 28 \mathrm{~mol} \%\right]$ at elevated temperature is required. Competitive product binding to the catalyst necessitates these conditions. In a final catalytic reaction with organoborates it proved possible to introduce an ethyl substituent at the 3 -position. U nder NiCl_{2} (dppf) catalysis, in the presence of excess zinc dust, reaction of 8 with $\mathrm{Li}_{[\mathrm{BEt}}^{3}(\mathrm{O}-$ Pri')] led to smooth formation of $\mathbf{2 2}$ in $\mathbf{7 0 \%}$ yield. This efficient

$13 \mathrm{Ar}^{1}=4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me} ; \mathrm{Ar}^{2}=\mathrm{Ph}$
$14 \mathrm{Ar}^{1}=\mathrm{Ar}^{2}=4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$
$15 \mathrm{Ar}^{1}=2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OMe}) ; \mathrm{Ar}^{2}=\mathrm{Ph}$
$16 \mathrm{Ar}^{1}=4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me} ; \mathrm{Ar}^{2}=2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OMe})$
Ar $=4 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}, \mathrm{Ar}^{2}=2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{M}$
$19 \mathrm{Ar}^{1}=4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me} ; \mathrm{Ar}^{2}=2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$
$20 \mathrm{Ar}^{1}=1-\left(8-\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{OMe}\right) ; \mathrm{Ar}^{2}=2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$
$21 \mathrm{Ar}^{1}=1-\left(2-\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{OMe}\right) ; \mathrm{Ar}^{2}=2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$

22
23
Scheme 2 Reagents and conditions: $\mathrm{i}, \mathrm{LiNPr}{ }_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; or LiTMP, THF, $0^{\circ} \mathrm{C}$; or BuLi•TMEDA, THF, $-78{ }^{\circ} \mathrm{C}$; ii, $\mathrm{D}_{2} \mathrm{O}$; iii, LiC $\mathrm{Li}_{10} \mathrm{H}_{8}, \mathrm{THF}$, $-70^{\circ} \mathrm{C}$, then $\mathrm{D}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{O}$; iv, $\mathrm{Ar}^{2} \mathrm{M} \mathrm{gBr}, \mathrm{NiCl}_{2}$ (dppf) ($5 \mathrm{~mol} \%$), THF $0^{\circ} \mathrm{C}$ to room temp., 1 h ; or $\mathrm{Ar}^{2} \mathrm{~B}(\mathrm{OH})_{2}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{DMF}$, $100^{\circ} \mathrm{C}, 18 \mathrm{~h}$; or $2-\left(\mathrm{M}_{3} \mathrm{Sn}\right) \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(28 \mathrm{~mol} \%), \mathrm{DMF}, 100^{\circ} \mathrm{C}, 18 \mathrm{~h} ; \mathrm{v}, \mathrm{LiBEt}_{3}\left(\mathrm{OPr}^{\mathrm{i}}\right), \mathrm{NiCl}_{2}(\mathrm{dppf})(6.5 \mathrm{~mol} \%)$, THF, reflux, 3 h ; vi, $\mathrm{LiSCH}_{2} \mathrm{Ph}, \mathrm{DM} \mathrm{F}, 120^{\circ} \mathrm{C}, 6 \mathrm{~h}$; vii, $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to room temp., 18 h
transfer of the ethyl functionality is of note as reductive elimination of the $\mathrm{Ni}(\mathrm{Et})(\mathrm{Ar})(\mathrm{dppf})$ intermediate must be rapid to avoid competing β-hydride elimination. Similar effects have been noted by M iyaura et al. ${ }^{17}$

In the absence of catalytic activation, the 3-chloro function is rather reluctant to participate in nucleophilic substitution reactions. R eaction of 8 with LiSCH ${ }_{2} \mathrm{Ph}$ is only achieved in DM F at high temperatures ($120^{\circ} \mathrm{C}$). U nder these conditions the desired product $\mathbf{2 3}$ is attained but some dealkylation of the methoxyether occurs as a low yield competing side reaction. The isolation of 23 allows an estimation of the barrier to rotation about the atropisomeric 1,1 '-axis. At room temperature in CDCl_{3} or $\left[^{2} \mathrm{H}_{8}\right.$]toluene the ${ }^{1} \mathrm{H}$ NMR spectrum of 23 shows a typical AB pattern for the diastereotopic benzyl protons. The appearance of the spectrum is identical in the temperature range -20 to $+100^{\circ} \mathrm{C}$. The signals do not broaden or coalesce and only a slight reduction in the chemical shift difference between the AB-pair is observed. Based on the unchanging nature of the spectrum, compound $\mathbf{2 3}$ must have an appreciable barrier to rotation ($\Delta \mathrm{G}^{\ddagger}>100 \mathrm{~kJ} \mathrm{~mol}^{-1}$) and similar barriers are likely in the related 8 -methoxynaphthyl compounds 8 and 22 The 8-methoxy function significantly increases the barrier to racemisation, as this value for 1-naphthylisoquinoline is 78.3 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ at $298 \mathrm{~K} .^{11}$ To assess the effect of the 8 -methoxy group on the rotational barriers in $\mathbf{8 , 2 2}$ and 23 a simple model of the transition state was investigated using the atomic coordinates of 8. Rotation about the 1,1'-bond indicates that anti transition states (i.e. those in structures 22-23) constitute the lowest energy pathway to racemisation for these compounds. ${ }^{18}$ Simple Chem 3D modelling using the coordinates of 8 indicates that as the dihedral angle falls from 90 to 72° the separation of the isoquinoline nitrogen and the 8-OM e ether oxygen falls to 2.71 \AA; the sum of the N, O van der Waals radii. At a dihedral angle of 0° the $\mathrm{N}-\mathrm{O}$ distance is only $1.76 \AA$ corresponding to about two thirds of the sum of N, O van der Waals radii. It is likely that these strong interactions lead to significant barriers to $1,1^{\prime}$ rotation.

For those compounds possessing methoxyether functionality, deliberate dealkylation can be effected by use of BBr_{3}. For example, reaction of 6 with BBr_{3} at $-78^{\circ} \mathrm{C}$ followed by warming to room temperature yields the substituted naphthol 24 in reasonable yield (78\%).

C olon reactions

Compounds 2-8 also engage in nickel-catalysed reductive dimerisations (zinc-based Colon reactions ${ }^{19,20}$) to furnish the 3,3'-biisoquinolines 25-31 (69-88\%, Scheme 3). These reac-

Ar
$2 \mathrm{Ar}=\mathrm{Ph}$
$3 \mathrm{Ar}=4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$
$4 \mathrm{Ar}=2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$
$5 \mathrm{Ar}=2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OMe})$
$6 \mathrm{Ar}=1-\left(2-\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{OMe}\right)$
$7 \mathrm{Ar}=1-\mathrm{C}_{10} \mathrm{H}_{7}$
$8 \mathrm{Ar}=1-\left(8-\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{OMe}\right)$

$25 \mathrm{Ar}=\mathrm{Ph}$
$26 \mathrm{Ar}=4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$
$27 \mathrm{Ar}=2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$
$28 \mathrm{Ar}=2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OMe})$
$29 \mathrm{Ar}=1-\left(2-\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{OMe}\right)$
$30 \mathrm{Ar}=1-\mathrm{C}_{10} \mathrm{H}_{7}$
$31 \mathrm{Ar}=1-\left(8-\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{OMe}\right)$

Scheme 3 R eagents and conditions: $\mathrm{i}, \mathrm{NaI}, \mathrm{Zn}, \mathrm{NiCl}_{2}$ ($10 \mathrm{~mol} \%$), PPh_{3} (30 mol\%), TH F, reflux, 3 h
tions allowed us to improve the procedure for the preparation of 2,2'-bipyridyl-type compounds. Investigation of the primary literature reveals that the isolated yields reported by many different groups for the Colon procedure span a wide range of yields (ca. 30-90\%) even for very similar molecules. A nalysis of the crude reaction mixture containing $\mathbf{2 5}$ by FAB mass spectrometry revealed the presence of insoluble $\mathrm{ZnCl}_{2}(\mathbf{2 5})$ as the
major product in addition to smaller amounts of $\mathbf{2 5}$. Given that stoichiometric amounts of ZnCl_{2} are produced in zincpromoted pyridyl dimerisations, loss of product as insoluble zinc complexes is not unexpected. We find that reproducibly high yields of free ligand are attained if aqueous $\mathrm{Na}_{3} \mathrm{PO}_{4}$ or 6 m HCl is added to the reaction mixture prior to work-up to remove the ZnCl_{2}.

In conclusion we have demonstrated that by exploiting the differential reactivity of the two carbon-chlorine bonds in 1,3dichloroisoquinoline, a wide range of novel isoquinolines and N, N-chelate ligands are easily accessible. The metal complexes and use of these ligands in various transition metal mediated reactions is currently being explored.

Experimental

All reactions involving air sensitive reagents were carried out under argon or nitrogen atmospheres using standard Schlenk techniques. Tetrahydrofuran (THF) and 1,2-dimethoxyethane (DME) were distilled from sodium-benzophenone immediately prior to use. Toluene and acetonitrile were distilled from calcium hydride, dimethylformamide (DMF) was dried over $4 \AA$ molecular sieves. POCl_{3} was distilled before use All other reagents were used as supplied. The light petroleum used had bp $40-60^{\circ} \mathrm{C}$. Flash chromatography was carried out on activated silica gel (R hône-Poulenc Sorbsil C $6040 / 60 \mathrm{H}$) or alumina (BDH, Brockmann GradeI). Thin layer chromatography (TLC) analyses used M erck K ieselgel $60 \mathrm{HF}^{254+366}$ plates. Infrared spectra were recorded using a Perkin-Elmer 983G instrument. Proton N M R spectra (270 M Hz) and ${ }^{13} \mathrm{C}$ N M R spectra (67.8 MHz) were recorded on a JEOL-270 spectrometer at ambient temperature in CDCl_{3}. H igh field proton NMR spectra were obtained on a Bruker V X R 600 S (600 M Hz). For all N M R spectra tetramethylsilane was used as the internal standard; J values are given in Hz . Finnigan 1020 (electron impact ionisation, EI) and VG-ZAB (EI and fast atom bombardment ionisation, $F A B$) machines were employed for mass spectrometry studies. The arylboronic acids (except 8 -methoxy-1-naphthylboronic acid) and $2-\left(\mathrm{M}_{3} \mathrm{Sn}^{2}\right) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}^{21}$ used were literature compounds. General routes to 1,3 -dichloroisoquinoline were employed. ${ }^{7-9}$

8-M ethoxy-1-naphthylboronic acid

A solution of Buti (1.7 m in pentane; $50 \mathrm{~cm}^{3}, 0.085 \mathrm{~mol}$) was added dropwise to 1 -methoxynaphthalene ($12.18 \mathrm{~g}, 11.2 \mathrm{~cm}^{3}$, 0.077 mol) in cyclohexane ($50 \mathrm{~cm}^{3}$) and the mixture was stirred at room temperature for 24 h . The resulting pale orange-brown suspension was added slowly, using a wide-bore cannula, to a stirred solution of $\mathrm{B}(\mathrm{OM} \mathrm{e})_{3}\left(16 \mathrm{~g}, 17.5 \mathrm{~cm}^{3}, 0.154 \mathrm{mmol}\right)$ in TH F ($100 \mathrm{~cm}^{3}$), keeping the temperature below $-60^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature overnight, then quenched with $10 \% \mathrm{HCl}$ and stirred under argon for 1 h . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined extracts dried over $\mathrm{M} \mathrm{gSO}_{4}$. Removal of the solvents furnished the crude product which was washed with hexane to give a fine white powder ($6.2 \mathrm{~g}, 40 \%$); mp $134-136^{\circ}{ }^{\circ}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}$ disc)/cm ${ }^{-1} 3390$ br s (OH), 3045w, 2940w (CH), 1611m, 1500s, 1462 m (CC), 1348br s (BO), 1250s (CO), 819s, 773s, 759m (CH); $\delta_{\mathrm{H}}\left[270 \mathrm{M} \mathrm{Hz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7.77$ (dd, $1 \mathrm{H}, \mathrm{J} 8.06$ and 1.22 , Ar-H), 7.6 [br s, 2 H, B(OH) 2], 7.48-7.32 (m, 4 H, Ar-H), 6.93 (dd, $1 \mathrm{H}, \mathrm{J} 7.08$ and $1.47, \mathrm{Ar}-\mathrm{H}$), $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{c}}[68$ $\left.\mathrm{M} \mathrm{Hz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 155.7,133.5,127.8,126.8,126.4,125.8,125.7$, $120.3,104.5,55.5$. This material was used as obtained.

Representative preparation of the 1-aryl-3-chloroisoquinolines:

 3-chloro-1-phenylisoquinoline 2A mixture of 1,3 -dichloroisoquinoline $\mathbf{1}(0.99 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.17 \mathrm{~g}, 0.15 \mathrm{mmol})$ in DM E ($25 \mathrm{~cm}^{3}$) was warmed to form a yellow solution. Phenylboronic acid ($0.67 \mathrm{~g}, 5.5 \mathrm{mmol}$) and CsF ($1.75 \mathrm{~g}, 11 \mathrm{mmol}$) were added and the mixture heated
under reflux for 6 h . Water and $\mathrm{Et}_{2} \mathrm{O}$ were added, the organic layer separated and the aqueous layer extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated to yield the crude product which was purified by dry flash chromatography $\left(1: 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-light petroleum changing to neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Y ield $1.08 \mathrm{~g}(90 \%)$; mp $81-82{ }^{\circ} \mathrm{C}$ (Found: C, 75.0; H, 4.2; N, 5.8. Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{CIN}$: C, 75.1; $\mathrm{H}, 4.2 ; \mathrm{N}, 5.8 \%)$; $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$ disc)/cm $\mathrm{cm}^{-1} 3050 \mathrm{w}, 3030 \mathrm{w}$ (CH), 1610m (CN), 1565m, 1540s, 1485m (CC), 855s, 760s, 700s (CH); $\delta_{\mathrm{H}}\left(600 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 8.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 7.81$ (d with unresolved splitting, J 5,6 8.4, $1 \mathrm{H}, \mathrm{H}-5$), 7.71 (apparent d, 1 H , $\left.J_{4,5} 1.0, H-4\right), 7.71-7.68$ (m, 3H,H-2', H-6' and H-6), 7.52-7.49 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 161.5,144.8,139.0,138.2$, 130.9, 130.1, 129.1, 128.5, 127.9, 127.4, 126.3, 125.5, 118.9; m/z (EI) $239,241\left(\mathrm{M}^{+}\right)$.
3-C hloro-1-(4-tolyl)isoquinoline 3. The same procedure was used as for the preparation of compound 2. Y ield 87%; mp $116-117^{\circ} \mathrm{C}$ (Found: C, 75.6; H, 4.7; N, 5.5. Calc. for $\left.\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{CIN}: \mathrm{C}, 75.7 ; \mathrm{H}, 4.8 ; \mathrm{N}, 5.5 \%\right) ; v_{\max }(\mathrm{K} \mathrm{Br} \mathrm{disc}) / \mathrm{cm}^{-1}$ 3060w, 2920w (CH), 1610m (CN), 1570m, 1540s, 1482m (CC), 860s, 835s (CH); $\delta_{\mathrm{H}}\left(600 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 8.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 7.79$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$) , 7.68 (s, $1 \mathrm{H}, \mathrm{H}-4$), 7.67 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), $7.60-7.58$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\prime}$), 7.51 (ddd, $1 \mathrm{H}, \mathrm{J} 8.6,6.8$ and 1.1, H-7), 7.34-7.32 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}(68$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$) 161.6, 144.8, 139.1, 139.0, 135.4, 130.8, 130.1, 129.1, 128.0, 127.2, 126.3, 125.6, 118.6, 21.4; m/z (EI) 253, 255 (M^{+}).

3-C hloro-1-(2-tolyl)isoquinoline 4. The same procedure was used as for the preparation of compound 2. Y ield 67%; mp 43$44^{\circ} \mathrm{C}$ (Found: C, 75.7; H,5.0; N, 5.4. Calc. for $\mathrm{C}_{16} \mathrm{H} \mathrm{H}_{12} \mathrm{CIN}: \mathrm{C}$, 75.7; H, 4.8; $\mathrm{N}, 5.5 \%$); $v_{\text {max }}\left(\mathrm{K} \mathrm{Br} \mathrm{disc)/cm}^{-1} 3060 \mathrm{w}, 2920 \mathrm{w}\right.$ (CH), 1613m (CN), 1572m, 1545s, 1480m (CC), 855s, 730s (CH); $\delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 7.74$ (apparent d, $1 \mathrm{H}, \mathrm{J} 0.75, \mathrm{H}-4$), 7.69 (ddd, $1 \mathrm{H}, \mathrm{J} 8.1,6.7$ and 1.2, $\mathrm{H}-6), 7.63$ (m, $1 \mathrm{H}, \mathrm{H}-8$), 7.46 (ddd, $1 \mathrm{H}, \mathrm{J} 8.1,6.8$ and 1.2 , H-7), 7.4-7.3 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 2.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$); $\delta_{\mathrm{c}}(68$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$) 162.3, 144.7, 138.5, 137.7, 136.5, 131.1, 130.4, 129.7, 128.9, 127.6, 127.4, 126.2, 125.7, 119.0, 19.9; m/z (EI) 253, $255\left(\mathrm{M}^{+}\right)$.

1-(2-M ethoxyphenyl)-3-chloroisoquinoline 5. The same procedure was used as for the preparation of compound 2. Yield 65%; mp $96-96.5^{\circ} \mathrm{C}$ (Found: C, 70.9; H, 4.4; N, 5.1. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{CINO}$: C, $\left.71.25 ; \mathrm{H}, 4.5 ; \mathrm{N}, 5.2 \%\right) ; v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$ disc)/ cm^{-1} 3060w, 2940w (CH), 1615m (CN), 1600m, 1580m, 1540m, $1480 \mathrm{~s}(\mathrm{CC}), 1242 \mathrm{~s}$ (CO), $855 \mathrm{~s}, 745 \mathrm{~s}$ (CH); $\delta_{\mathrm{H}}\left(600 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right)$ 7.78 (m, 1 H , H -5), 7.72 (apparent d, 1 H , J 0.86, H-4), 7.68 (m, $1 \mathrm{H}, \mathrm{H}-8$), 7.66 (ddd, $1 \mathrm{H}, \mathrm{J} 8.1,6.7$ and 1.2, H-6), 7.48-7.44 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$ and $\mathrm{H}-7$), 7.38 (dd with unresolved splitting, 1 H , J 7.4 and 1.75, H-3'), 7.10 (ddd, $1 \mathrm{H}, \mathrm{J} 8.4,7.4$ and 1.0, H-4'), 7.03 (dd, $1 \mathrm{H}, \mathrm{J} 8.3$ and $1.0, \mathrm{H}-6^{\prime}$), $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{c}}(68$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$) 160.0, 157.1, 144.8, 138.2, 131.3, 130.8, 130.5, $128.2,127.5,127.0,126.7,126.0,120.9,119.2,111.2,55.6 ; \mathrm{m} / \mathrm{z}$ (EI) 269, $271\left(\mathrm{M}^{+}\right)$.

3-C hloro-1-(2-methoxy-1-naphthyl)isoquinoline 6. The same procedure was used as for the preparation of compound 2. Yield 85%; mp $159-160^{\circ}{ }^{\circ}$; $v_{\max }(\mathrm{K} \mathrm{Br} \mathrm{disc}) / \mathrm{cm}^{-1} 3060 \mathrm{w}, 2950 \mathrm{w}$ (CH), 1615m (CN), 1590m, 1575m, 1540m, 1505m (CC), 1260s, 1245s (CO), $810 \mathrm{~m}, 750 \mathrm{~s}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.01$ (apparent dd, $1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 3^{\prime}} 9.1$ and $\mathrm{J}_{4^{\prime}, 5^{\prime}} 0.6, \mathrm{H}-4^{\prime}$), 7.85 (d with unresolved splitting, $1 \mathrm{H}, \mathrm{J}_{5,6^{\prime}} 8.1, \mathrm{H}-5^{\prime}$), 7.84 (d with unresolved splitting, $1 \mathrm{H}, \mathrm{J} 5,68.2, \mathrm{H}-5), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.67$

 $\mathrm{J}_{7,5} 1.1, \mathrm{H}-7$), 7.37 (ddd, $1 \mathrm{H}, \mathrm{J}_{6,5}{ }^{5} 8.1$, J ${ }_{6,7} 6.7$ and $\mathrm{J}_{6 ;, 8^{1}} 1.1$, $\mathrm{H}-6^{\prime}$), 7.26 (ddd, $1 \mathrm{H}, \mathrm{J} 7_{7}, 88.4, \mathrm{~J} 7^{\prime}, 6^{\prime} 6.7$ and $\mathrm{J}_{7,5}, 1.4, \mathrm{H}-7^{\prime}$), 7.03 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}$), $3.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 159.2$, 155.0, 145.2, 138.4, 133.7, 131.1, 131.0, 129.1, 128.0, 127.8, 127.4, 127.1, 126.2, 125.0, 123.9, 120.7, 119.3, 113.4, $56.6 ; \mathrm{m} / \mathrm{z}$ (EI) 319, $321\left(\mathrm{M}^{+}\right)$[Found (HRMS): 319.0764. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{CINO}$ requires 319.0764].

3-C hloro-1-(1-naphthyl)isoquinoline 7. The same procedure was used as for the preparation of compound 2. Y ield 69\%; $\mathrm{mp} 113-114^{\circ} \mathrm{C}$ (Found: C, 78.4; H, 4.1; N, 4.8. Calc. for $\left.\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{CIN}: \mathrm{C}, 78.8 ; \mathrm{H}, 4.2 ; \mathrm{N}, 4.8 \%\right) ; v_{\max }(\mathrm{K} \mathrm{Br} \mathrm{disc}) / \mathrm{cm}^{-1}$ 3050w (CH), 1613m (CN), 1570m, 1545s, 1485m (CC), 870s, 855s, $775 \mathrm{~s}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(600 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 8.00-7.99(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4^{\prime}$), 7.93 (d with unresolved splitting, $1 \mathrm{H}, \mathrm{J}_{5,6^{\prime}} 8.1, \mathrm{H}-5^{\prime}$), 7.86-7.84 (m, $1 \mathrm{H}, \mathrm{H}-5), 7.83$ (apparent d, $1 \mathrm{H}, \mathrm{J} 0.98, \mathrm{H}-4$), 7.69 (ddd, 1 H , J $6,58.3$, J 6,7 . 6.8 and J $\mathrm{f}_{8} 1.1, \mathrm{H}-6$), 7.60 (dd, 1 H , $\mathrm{J}_{3^{\prime}, 4^{\prime}} 8.1$ and $\left.\mathrm{J}_{3^{\prime}, 2^{\prime}} 6.9, \mathrm{H}-3^{\prime}\right), 7.59-7.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 7.57(\mathrm{dd}, 1$ $\mathrm{H}, \mathrm{J}_{2^{2}, 3^{\prime}} 6.9$ and $^{\mathrm{J}^{2}, 4} 4^{\prime} 1.5, \mathrm{H}-2^{\prime}$), 7.48 (ddd, $1 \mathrm{H}, \mathrm{J}_{6^{\prime}, 5^{\prime}} 8.1, \mathrm{~J}_{6^{\prime}, 7^{\prime}} 6.5$ and $\mathrm{J}_{6,8} 8^{\prime} 1.4, \mathrm{H}-6^{\prime}$), 7.38 (ddd, $1 \mathrm{H}, \mathrm{J}_{7,8} 8.5, \mathrm{~J}_{7,6} 6.8$ and $\mathrm{J}_{7,5} 1.2$, H-7), 7.38-7.36 (m, 1 H , H-8'), 7.34 (ddd, 1 H , J $7_{7,8} 8.5$, J $\mathrm{y}_{7,6} 6.5$ and J ${ }_{7}, 5^{\prime} 1.3, \mathrm{H}-7^{\prime}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$) $161.3,144.9,138.5$, 135.6, 133.7, 132.1, 131.2, 129.3, 128.3, 128.1, 127.9, 127.4, 127.2, 126.6, 126.2, 126.1, 125.8, 125.2, 119.4; m/z (EI) 289, 291 (M^{+}).
3-C hloro-1-(8-methox y-1-naphthyl)isoquinoline 8. The same procedure was used as for the preparation of compound 2. Yield 80%; mp $144^{\circ} \mathrm{C}$ (Found: C, 74.9; H, 4.4; N , 4.4. Calc. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{CINO}$: C, 75.1; H, 4.4; N, 4.4\%); $v_{\text {max }}(\mathrm{K} \mathrm{Br} \mathrm{disc}) / \mathrm{cm}^{-1}$ 3060w, 2940 w (CH), $1610 \mathrm{~m}(\mathrm{CN}$), $1573 \mathrm{~m}, 1545 \mathrm{~m}, 1460 \mathrm{~m}$ (CC), 1257s (CO), $853 \mathrm{~m}, 820 \mathrm{~s}, 760 \mathrm{~m}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(600 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.94$ (dd, $1 \mathrm{H}, \mathrm{J}_{4,3^{\prime}} 8.2$ and $\mathrm{J}_{4,2^{\prime}} 1.3, \mathrm{H}-4^{\prime}$), 7.79 (d with unresolved splitting, $1 \mathrm{H}, \mathrm{J}_{5,6} 8.3, \mathrm{H}-5$), 7.72 (apparent d, $1 \mathrm{H}, \mathrm{J} 0.8, \mathrm{H}-4$), 7.62 (ddd, 1 H, J $6,58.3$, J $6,76.7$ and J 6,8 1.2, H-6), 7.56 (dd, 1 H, $\mathrm{J}_{3^{3}, 4} 8.2$ and $\mathrm{J}_{3^{\prime}, 2^{\prime}} 7.0, \mathrm{H}-3^{\prime}$), 7.54 (dd, $1 \mathrm{H}, \mathrm{J}_{5^{\prime}, 6^{\prime}} 8.2$ and $\mathrm{J}_{5^{\prime}, 7^{\prime}} 0.9$, $\mathrm{H}-5^{\prime}$), 7.42 (dd, 1 H, J ${ }_{2,3}{ }^{3} 7.0$ and ${ }_{2,4}$ 1.3, H-2'), 7.42-7.39 (m, $2 \mathrm{H}, \mathrm{H}-8$ and $\mathrm{H}-6^{\prime}$), 7.31 (ddd, $1 \mathrm{H}, \mathrm{J} 7,8$ 8.1, $\mathrm{J}_{7,6} 6.7$ and $\mathrm{J}_{7,5}$ 1.2, H-7), 6.88 (dd, 1 H , J $7_{7}, 6^{\prime} 7.1$ and $\mathrm{J}_{7,5} 5^{\prime} 0.9, \mathrm{H}-7^{\prime}$), 3.12 (s , $3 \mathrm{H}, \mathrm{OCH}_{3}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 165.2,155.7,143.9,137.3$, 135.3, 134.0, 130.5, 129.0, 128.3, 127.8, 127.3, 126.7, 126.4, 125.7, 125.6, 124.2, 121.2, 117.9, 106.4, 55.5; m/z (EI) 319, 321 (M+).

Lithiation of 3-chloro-1-(1-naphthyl)isoquinoline 7 and $\mathrm{D}_{2} \mathrm{O}$ quench

A solution of BuLi (1.6 m in hexanes; $800 \mathrm{~mm}^{3} 0.125 \mathrm{mmol}$) was added dropwise to $2,2,6,6$-tetramethylpiperidine ($17 \mathrm{mg}, 21$ $\left.\mathrm{mm}^{3}, 0.125 \mathrm{mmol}\right)$ in THF ($2.5 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 5 min then a solution of the 3-chloro-1-(1-naphthyl)isoquinoline 7 ($28 \mathrm{mg}, 0.11 \mathrm{mmol}$) in TH F ($2.5 \mathrm{~cm}^{3}$) was added dropwise. The mixture was stirred for 15 min then quenched with $\mathrm{D}_{2} \mathrm{O}$. A fter the reaction had reached room temperature, the solvents were removed in vacuo and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ added. The solution was dried over MgSO_{4} and evaporated to give the crude product, the ${ }^{1} \mathrm{H}$ NMR spectrum of which was identical to the starting material, save for the absence of the 4-isoquinoline signal. A ll other data were in accord with the formation of 10.

L ithiation using lithium naphthalenide: radical anion reduction of 8

A solution of 3-chloro-1-(8-methoxy-1-naphthyl)isoquinoline 8 ($50 \mathrm{mg}, 0.156 \mathrm{mmol}$) in THF ($2.5 \mathrm{~cm}^{3}$) was cooled to $-72^{\circ} \mathrm{C}$ $\left(\mathrm{CO}_{2}-\mathrm{EtOH}\right)$ and stirred while a solution of $\mathrm{LiC}_{10} \mathrm{H}_{8}(0.23 \mathrm{~m}$ in TH F ; $2.4 \mathrm{~cm}^{3}, 0.546 \mathrm{mmol}$) was added rapidly. The mixture was stirred at $-72^{\circ} \mathrm{C}$ for 5 min then quenched with $\mathrm{H}_{2} \mathrm{O}\left(0.1 \mathrm{~cm}^{3}\right)$. A fter warming to room temperature, the solvent was evaporated and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ added. The solution was dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated to give the crude product which was washed two or three times with pentane; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 8.56(\mathrm{~d}, 1 \mathrm{H}$, J $5.5, \mathrm{H}-3$), 7.95 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 8.5$ and $1.5, \mathrm{H}-4^{\prime}$), $7.90-7.86$ (m, 1 $\mathrm{H}, \mathrm{H}-5$), 7.64 (d with unresolved splitting, $1 \mathrm{H}, \mathrm{J} 5.5, \mathrm{H}-4$), 7.66-7.54 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.46-7.40 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.34 (ddd, $1 \mathrm{H}, \mathrm{J} 8.0,6.5$ and $1.3, \mathrm{H}-7$), 6.69 (dd, $1 \mathrm{H}, \mathrm{J} 7.8$ and $1.0, \mathrm{H}-7^{\prime}$), $3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. When the reaction was carried out as above and quenched with $\mathrm{D}_{2} \mathrm{O}$ the intensities of the $\mathrm{H}-3$ and $\mathrm{H}-4^{\prime}$ signals were in the ratio $0.28: 1$, indicating 60% deuterium incorporation.

Representative preparation of 1,3-diarylisoquinolines via NiCl_{2} (dppf) catalysed \mathbf{G} rignard coupling of 1,3 -diphenylisoquinoline 12
A mixture of $\mathrm{NiCl}_{2}(6.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ and dppf ($28 \mathrm{mg}, 0.05$ mmol) in THF ($5 \mathrm{~cm}^{3}$) was warmed to give a dark green solution. Solid 3-chloro-1-phenylisoquinoline 2 ($240 \mathrm{mg}, 1.00$ mmol) was added and the mixture cooled to $0^{\circ} \mathrm{C}$ then treated dropwise with a solution of $\mathrm{PhM} \mathrm{gBr}\left(3.0 \mathrm{~m}\right.$ in $\mathrm{Et}_{2} \mathrm{O} ; 0.4 \mathrm{~cm}^{3}, 1.2$ $\mathrm{mmol})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min then at room temperature for 30 min . Water and $\mathrm{Et}_{2} \mathrm{O}$ were added, the organic layer separated and the aqueous layer extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried over $\mathrm{M} \mathrm{gSO}_{4}$ and concentrated. Flash chromatography ($\mathrm{SiO}_{2}, 2: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum) gave 1,3diphenylisoquinoline as a colourless oil which solidified slowly. Y ield $219 \mathrm{mg}(78 \%)$; mp $71-73^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{K} \mathrm{Br} \mathrm{disc)/cm}^{-1} 3045 \mathrm{w}\right.$ (CH), 1615m (CN), 1585w, 1552m, 1490m (CC), 770s, 765s, 690 s , $682 \mathrm{~s}(\mathrm{CH})$; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 8.22$ (m, $2 \mathrm{H}, 3$-phenyl $\mathrm{H}-2$ and $\mathrm{H}-6$), $8.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 8.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 7.94(\mathrm{~m}, 1$ H, H-5), 7.82 (m, 2 H , 1-phenyl H-2 and H-6), 7.68 (ddd, 1 H J 1.2, 6.8 and $8.2, \mathrm{H}-6$), $7.60-7.48$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{Ar} \mathrm{H}$), $7.40(\mathrm{~m}, 1 \mathrm{H}$ 3 -phenyl H-4); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 160.4,150.2,139.9,139.6$, 137.9, 130.3, 130.1, 128.7, 128.6, 128.5, 128.3, 127.6, 127.5, 127.1, 126.9, 125.8, 115.8; m/z (EI) 281 (M ${ }^{+}$) [Found (HRMS): 281.1204. $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}$ requires 281.1204].

3-P henyl-1-(4-tolyl)isoquinoline 13. The same procedure was used as for the preparation of compound 12. Yield 84\%; mp $56-57^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$ disc)/ $/ \mathrm{cm}^{-1} 3050 \mathrm{w}$, 2910w (CH), 1615 m (CN), 1585w, 1550m, 1490m (CC), 825s, 770s, 685s (CH); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 8.22(\mathrm{~m}, 2 \mathrm{H}$, phenyl $\mathrm{H}-2$ and $\mathrm{H}-6), 8.15$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$) , 8.05 (apparent d, $1 \mathrm{H}, \mathrm{J} 0.97, \mathrm{H}-4$) , $7.92(\mathrm{~m}, 1 \mathrm{H}$, H-5), 7.72 (m, 2 H , tolyl H-3 and H-5), 7.67 (ddd, $1 \mathrm{H}, \mathrm{J} 1.23$, 6.84 and $8.18, \mathrm{H}-6$), $7.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 7.48(\mathrm{~m}, 2 \mathrm{H}$, phenyl $\mathrm{H}-3$ and $\mathrm{H}-5$), 7.39 ($\mathrm{m}, 1 \mathrm{H}$, phenyl $\mathrm{H}-4$), 7.36 ($\mathrm{m}, 2 \mathrm{H}$, tolyl $\mathrm{H}-2$ and $\mathrm{H}-6$), 2.48 (s, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$) 160.4 150.2, 139.7, 138.5, 137.9, 137.1, 130.2, 130.0, 129.0, 128.7, $128.5,127.7,127.5,127.1,126.8,125.9,115.5,21.4 ; \mathrm{m} / \mathrm{z}$ (EI) 295 (M^{+}) [Found (HRMS): 295.1361. $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}$ requires 295.1361].

1,3-Di(4-tolyl)isoquinoline 14. The same procedure was used as for the preparation of compound 12 . Yield 73%; mp 89$90^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$ disc)/ $\mathrm{cm}^{-1} 3050 \mathrm{w}, 2920 \mathrm{w}(\mathrm{CH}), 1615 \mathrm{~m}(\mathrm{CN})$, $1605 \mathrm{~m}, 1580 \mathrm{~m}, 1550 \mathrm{~s}, 1520 \mathrm{~m}$ (CC), 825br s(CH); $\delta_{\mathrm{H}}(600 \mathrm{M} \mathrm{Hz}$, CDCl_{3}) 8.14-8.12 (m, $1 \mathrm{H}, \mathrm{H}-8$), 8.12-8.10 (m, 2 H, 3-tolyl H-3 and $\mathrm{H}-5$), 8.02 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$), 7.91-7.89 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), $7.72-7.69$ ($\mathrm{m}, 2 \mathrm{H}, 1$-tolyl H-3 and $\mathrm{H}-5$), 7.65 (ddd, $1 \mathrm{H}, \mathrm{J} 8.1,6.6$ and 1.1, H-6), 7.47 (ddd, 1 H, J 8.1, 6.8 and 1.1, H-7), 7.37-7.35 (m, 2 H, 1-tolyl H-2 and H-6), 7.30-7.28 (m, $2 \mathrm{H}, 3$-tolyl H-2 and H-6), 2.47 (s, 3 H , 1-tolyl CH 3), 2.41 (s, $3 \mathrm{H}, 3$-tolyl CH ${ }_{3}$); $\delta_{\mathrm{c}}(68$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 153.9, 143.7, 132.0, 131.9, 131.5, 130.7, 130.4, 123.7, 123.5, 123.0, 122.5, 121.2, 120.9, 120.5, 120.2, 119.3, 108.5, 15.0, 14.9; m/z (EI) $309\left(\mathrm{M}^{+}\right)$[Found (HRMS): 309.1517. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}$ requires 309.1517].

1-(2-M ethoxyphenyl)-3-phenylisoquinoline 15 . The same procedure was used as for the preparation of compound 12. Y ield 58%; mp 113-114 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{K} \mathrm{Br} \mathrm{disc)/cm}{ }^{-1} 3050 \mathrm{w}, 2922 \mathrm{w}(\mathrm{CH}\right.$), 1612m (CN), 1592m, 1574m, 1557s (CC), 1242 (CO), 758s, 695s (CH); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 8.18-8.14(\mathrm{~m}, 2 \mathrm{H}$, phenyl $\mathrm{H}-2$ and H-6), 8.06 (s, $1 \mathrm{H}, \mathrm{H}-4$), 7.91-7.89 (m, $1 \mathrm{H}, \mathrm{H}-5$), 7.71-7.69 (m, $1 \mathrm{H}, \mathrm{H}-8$), 7.64 (ddd, $1 \mathrm{H}, \mathrm{J} 8.1,6.8$ and 1.2, $\mathrm{H}-6$), $7.53-7.36$ (m, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.18-7.12 [m, $1 \mathrm{H}, 2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OM} \mathrm{e)} \mathrm{H-4]}, \mathrm{7.09-7.05}$ $\left[\mathrm{m}, 1 \mathrm{H}, 2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OM} \mathrm{e}) \mathrm{H}-6\right], 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{c}}(68 \mathrm{M} \mathrm{Hz}$, CDCl_{3}) 159.1, 157.5, 150.6, 139.9, 137.0, 131.6, 130.0, 129.95, 128.7, 128.3, 128.0, 127.25, 127.2, 126.6, 120.9, 116.2, 111.2, 55.6; m/z (EI) $311\left(\mathrm{M}^{+}\right)$[Found (H R M S): 311.1310. $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}$ requires 311.1310].

Representative preparation of 1,3-diarylisoquinolines via catalytic Suzuki coupling of 3-(2-methoxyphenyl)-1-(4-tolyl)isoquinoline 16

A mixture of 3-chloro-1-(4-toly) isoquinoline 3 ($253 \mathrm{mg}, 1$
$\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(58 \mathrm{mg}, 0.05 \mathrm{mmol})$ in degassed DM F $\left(5 \mathrm{~cm}^{3}\right)$ was warmed to give a bright yellow solution. Solid 2-methoxyphenylboronic acid (1.1 mmol) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (488.7 $\mathrm{mg}, 1.5 \mathrm{mmol}$) were added and the mixture was heated at $100^{\circ} \mathrm{C}(18 \mathrm{~h})$. Water and $\mathrm{Et}_{2} \mathrm{O}$ were added to the cooled mixture, the organic phase separated and the aqueous layer extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with 1 m HCl and brine and then dried over $\mathrm{M}_{4} \mathrm{SO}$ and concentrated. The residue was purified by flash chromatography ($\mathrm{SiO}_{2}, 3: 2$ light petroleum $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield 3 -(2-methoxyphenyl)-1-(4-tolyl) isoquinoline 16 as a white solid, 200 $\mathrm{mg}(61 \%) ; \mathrm{mp} 130-131^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}\right.$ disc)/cm ${ }^{-1} 3045 \mathrm{w}, 2943 \mathrm{w}$ (CH), 1612m (CN), 1597w, 1566m, 1549m (CC), 1240 (CO), $825 \mathrm{~m}, 756 \mathrm{~s}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 8.24$ (s, $\left.1 \mathrm{H}, \mathrm{H}-4\right), 8.12$ (dd, $1 \mathrm{H}, \mathrm{J}_{8,7} 8.5$ and $\mathrm{J}_{8,6} 1.0, \mathrm{H}-8$), 8.07 [dd, $1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 4} 7.6$ and $\mathrm{J}_{3^{\prime}, 5^{\prime}} 1.9,2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OM} \mathrm{e)} \mathrm{H-3]}, \mathrm{7.91-7.88} \mathrm{(m} 1 \mathrm{H},, \mathrm{H}-5), 7.70-7.67$ ($\mathrm{m}, 2 \mathrm{H}$, tolyl H-3 and H-5), 7.65 (ddd, $1 \mathrm{H}, \mathrm{J}_{6,5} 8.1, \mathrm{~J}_{6,7} 6.8$ and $\mathrm{J}_{6,8} 1.2, \mathrm{H}-6$), 7.49 (ddd, $1 \mathrm{H}, \mathrm{J}_{7,8} 8.5, \mathrm{~J}_{7,6} 6.8$ and $\mathrm{J}_{7,5} 1.4, \mathrm{H}-7$), 7.38-7.32 [m, 3 H , tolyl H-2 and H-6, 2-C $6_{6} \mathrm{H}_{4}(\mathrm{OM} \mathrm{e)} \mathrm{H-5]}, \mathrm{7.10}$ [dt, $1 \mathrm{H}, \mathrm{J}_{4 ; 3^{\prime}} \approx \int_{4,5^{\prime}} \approx 7.6$ and $\left.\mathrm{J}_{4,6^{\prime}} 1.2,2-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OM} \mathrm{e}) \mathrm{H}-4\right]$, 7.05-7.02 [m, $1 \mathrm{H}, 2-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{OM} \mathrm{e)} \mathrm{H-6]} ,3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)\right.$, 2.46 (s, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$) 160.1, 157.3, 148.1, 138.3, 137.2, 137.2, 131.8, 130.1, 129.7, 129.3, 129.0, 127.6, 127.5, 126.7, 125.5, 121.1, 120.4, 111.5, 55.8, 21.4; m/z (EI) $325\left(\mathrm{M}^{+}\right)$[Found (HRMS): 325.1467. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}$ requires 325.1467].

1-(4-Tolyl)-3-(2-tolyl)isoquinoline 17. Thesameprocedurewas used as for the preparation of compound 16. Y ield 77\%; mp $109-110^{\circ}{ }^{\circ}$; $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}\right.$ disc) $/ \mathrm{cm}^{-1} 3050 \mathrm{w}, 3022 \mathrm{w}$ (CH), 1610 m (CN), 1583w, 1549m, 1490m (CC), 802s, 799s, 762s (CH); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right)$ 8.19-8.15 (m, $\left.1 \mathrm{H}, \mathrm{H}-8\right), 7.92-7.88(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{H}-5), 7.73$ (s, $1 \mathrm{H}, \mathrm{H}-4$), 7.69 (ddd, $1 \mathrm{H}, \mathrm{J} 8.2,6.7$ and 1.2, H-6), 7.68-7.64 (m, 2 H , p-tolyl H-3 and H-5), 7.59-7.54 (m, 1 H, Ar-H), 7.53 (ddd, 1 H, J 8.2, 6.7 and 1.5, H-7), 7.36-7.32 ($\mathrm{m}, 2 \mathrm{H}$, p-tolyl H-2 and H-6), 7.32-7.26 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 2.49 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 160.0$, 153.0, 138.4, 137.5, 136.4, 130.8, 130.2, 130.1, 129.0, 128.0, 127.7, 127.2, 126.9, 125.9, 125.3, 119.3, 21.4, 20.8; m/z (EI) $309\left(\mathrm{M}^{+}\right)$[Found (HRMS): 309.1517. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}$ requires $309.17175]$.
1-(1-N aphthyl)-3-(2-naphthyl)isoquinoline 18. The same procedure was used as for the preparation of compound 16. Y ield $68 \% ; \mathrm{mp} 174-175^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br} \mathrm{disc}) / \mathrm{cm}^{-1} 3043 \mathrm{w}$ (CH), 1612 w (CN), 1580w, 1557s, 1501w (CC), 812s, 808s, 775s, 747s (CH); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.71$ (s with unresolved splitting, 1 H , Ar-H), 8.33-8.29 (m, 2 H, Ar-H), 8.05-7.92 (m, 5 H, Ar-H), 7.88-7.83 (m, 1 H, A r-H), 7.72-7.48 (m, 8 H, A r-H), 7.41-7.32 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 160.4,150.4,137.5,137.3$, 137.0, 133.8, 133.7, 133.5, 132.5, 130.4, 128.9, 128.8, 128.4, 128.3, 128.0, 127.9, 127.7, 127.5, 127.4, 127.0, 126.6, 126.3, 126.3, 126.2, 126.0, 125.3, 125.0, 116.5; m/z (EI) 381 (M ${ }^{+}$) [Found (HRM S): 381.1518. $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{~N}$ requires 381.1518].

R epresentative preparation of 1,3-diarylisoquinolines via catalytic Stille coupling of 1-(4-tolyl)-3-(2-pyridyl)isoquinoline 19

A mixture of 3-chloro-1-(4-toly))isoquinoline 3 ($127 \mathrm{mg}, 0.5$ mmol), 2-pyridyltrimethylstannane ($145 \mathrm{mg}, 0.60 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(192 \mathrm{mg}, 0.167 \mathrm{mmol})$ in D M F ($5 \mathrm{~cm}^{3}$) was heated at $100^{\circ} \mathrm{C}$ for 18 h . Water and $\mathrm{Et}_{2} \mathrm{O}$ were added, the organic phase separated and the aqueous phase extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{M} \mathrm{SSO}_{4}$ and concentrated. The residue was purified by flash chromatography ($\mathrm{SiO}_{2}, 1: 4 \mathrm{EtOA} \mathrm{c}$-light petroleum) to yield 1-(4-tolyl)-3-(2-pyridyl) isoquinoline 19 as a white solid (90 $\mathrm{mg}, 61 \%$); mp 109-110 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 84.8 ; \mathrm{H}, 5.4 ; \mathrm{N}, 9.5$. Calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{10} \mathrm{~N}_{2}: \mathrm{C}, 85.1 ; \mathrm{H}, 5.4 ; \mathrm{N}, 9.45 \%\right)$; $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}\right.$ disc) $/ \mathrm{cm}^{-1}$ 3050w, 2920w (CH), 1610m, 1575s (CN), 1555m, 1490m, 1470s (CC), $825 \mathrm{~s}, 788 \mathrm{~s}, 740 \mathrm{~s}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 8.77(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-4$), 8.73 (ddd, $1 \mathrm{H}, \mathrm{J}_{6,5} 5^{\prime} 4.7, \mathrm{~J}_{6^{\prime} 4^{\prime}} 1.7$ and $\mathrm{J}_{6^{\prime}, 3^{\prime}} 1.0$, pyridyl
$\mathrm{H}-6), 8.64$ (ddd, $1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 4^{\prime}} 8.1$ and $\mathrm{J}_{3^{\prime}, 5^{\prime}} \approx \mathrm{J}_{3^{\prime}, 6^{\prime}} \approx 1.0$, pyridyl $\mathrm{H}-3$), 8.16 ($\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{8,7} 8.4$ and $\mathrm{J}_{8,6} 1.1, \mathrm{H}-8$), $8.03-8.00(\mathrm{~m}, 1 \mathrm{H}$, H-5), 7.81 (ddd, $1 \mathrm{H}^{\prime} \mathrm{J}_{4,3} 8.1, \mathrm{~J}_{4,5^{\prime}} 7.5$ and $\mathrm{J}_{4,6^{\prime}} 1.8$, pyridyl H-4), 7.73-7.70 (m, 2 H, tolyl H-3 and H-5), 7.68 (ddd, $1 \mathrm{H}, \mathrm{J} 6,5$ $8.1, J_{6,7} 6.9$ and $\left.J_{6.8} 1.1, \mathrm{H}-6\right), 7.53$ (ddd, $1 \mathrm{H}, \mathrm{J} 7,88.4, \mathrm{~J} 7,66.9$ and $\mathrm{J}_{7,5} 1.5, \mathrm{H}-7$), $7.39-7.36(\mathrm{~m}, 2 \mathrm{H}$, tolyl H-2 and H-6), 7.29 (ddd, $1 \mathrm{H}, \mathrm{J}_{5^{\prime}, 4^{4}} 7.4, \mathrm{~J} 5_{5^{\prime}, 6^{\prime}} 4.7$ and $\mathrm{J}_{5^{\prime}, 3^{\prime}} 1.1, \mathrm{H}-5$), 2.48 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 160.1,156.7,149.2,148.8,138.6,137.8$, 137.0, 136.9, 130.2, 130.0, 129.0, 128.3, 127.6, 127.4, 126.8, 123.3, 121.6, 116.6, 21.2; m/z (EI) 296 (M ${ }^{+}$).

1-(8-M ethoxy-1-naphthyl)-3-(2-pyridyl)isoquinoline 20. The same procedure was used for the preparation of compound 19. Yield 94%; mp $186-188^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$ disc)/ $/ \mathrm{cm}^{-1} 3050 \mathrm{w}, 2930 \mathrm{w}$ (CH), 1610m, 1575s (CN), 1560s, 1450m, 1460m (CC), 1260s (CO), $825 \mathrm{~s}, 795 \mathrm{~m}, 690 \mathrm{~m}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.77$ (apparent d, $1 \mathrm{H}, \mathrm{J} 0.6, \mathrm{H}-4), 8.73$ (ddd, $1 \mathrm{H}, \mathrm{J} 6_{6,5^{5}} 4.8, \mathrm{~J}_{6^{\prime}, 4^{\prime}} 1.8$ and $\mathrm{J}_{6^{\prime}, 3^{\prime \prime}} 0.9$, pyridyl $\mathrm{H}-6$), 8.53 (ddd, $1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 4^{\prime \prime}} 8.0$ and $\int_{3^{3}, 5^{5}} \approx \int_{3^{\prime}, 6^{\prime \prime}} \approx 1.0$, pyridyl H-3), 8.00 (apparent d, $1 \mathrm{H}, \mathrm{J} 8.2$, $\mathrm{H}-5$), 7.97 (dd, $1 \mathrm{H}, \mathrm{J}_{4,3^{\prime}} 8.2$ and J $4_{4}, 2^{\prime} 1.3$, naphthyl H-4), 7.75 (ddd, $1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 3^{7}} 8.0, \mathrm{~J}_{4^{\prime}, 5^{7}} 7.4$ and J $4^{4,6^{1}} 1.8$, pyridyl H-4), 7.62 (dd, $1 \mathrm{H}, \mathrm{J}_{3,4} 8.2$ and $\mathrm{J}_{3^{3}, 2^{2}} 6.9$, naphthyl $\mathrm{H}-3$), 7.61 (ddd, $1 \mathrm{H}, \mathrm{J}_{6,5}$ 8.1, $J_{6,7} 6.7$ and $\left.J_{6,8} 1.2, H-6\right), 7.57\left(d d, 1 H, J_{5,6} 8.3\right.$ and $J_{5^{\prime}, 7^{\prime}}$ 1.0, naphthyl $\mathrm{H}-5$), 7.53 (dd, $1 \mathrm{H}, \mathrm{J}_{2^{\prime}, 3^{\prime}} 6.9, \mathrm{~J}_{2^{\prime}, 4^{\prime}} 1.3$, naphthyl H-2), 7.41 (apparent t, 1 H , J 7.8, naphthyl H-6), 7.39-7.37 (m, $1 \mathrm{H}, \mathrm{H}-8$), 7.31 (ddd, $1 \mathrm{H}, \mathrm{J} 7,8.8$, J $\mathrm{J}_{7,6} 6.7$ and J $7,51.2, \mathrm{H}-7$), 7.27 (ddd, $1 \mathrm{H}, \mathrm{J}_{5^{\prime}, 4^{7}} 7.4, \mathrm{~J}_{5^{\prime}, 6^{\prime \prime}} 4.8$ and $\mathrm{J}_{5^{\prime \prime}, 3^{\prime \prime}} 1.2$, pyridyl H-5), 6.68 (apparent d, $1 \mathrm{H}, \mathrm{J} 7.1$, naphthyl $\mathrm{H}-7$), $3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 163.9,157.1,156.1,149.2,148.1,136.9$, $136.0,135.9,135.3,129.6,128.6,128.4,127.6,127.4,126.9$, 126.3, 125.8, 124.6, 123.1, 121.9, 121.2, 116.3, 106.4, 55.4; m/z (EI) $362\left(\mathrm{M}^{+}\right)$[Found (HRM S): 362.1419. $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires 362.1419].

1-(2-M ethoxy-1-naphthyl)-3-(2-pyridyl)isoquinoline 21. The same procedure was used as for the preparation of compound 19. Y ield 80%; $\mathrm{mp} 155-156^{\circ} \mathrm{C}$ (Found: C, 69.8; H, 4.4; N, 6.2. Calc. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 69.8; H, 4.5; $\mathrm{N}, 6.3 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br} \mathrm{disc}) / \mathrm{cm}^{-1} 3050 \mathrm{w}, 2930 \mathrm{w}$ (CH), 1615m (CN), 1590m, $1575 \mathrm{~s}, 1557 \mathrm{~m}$ (CC), 1212s, 1198 s (CO), $807 \mathrm{~m}, 795 \mathrm{~m}, 690 \mathrm{~s}$ (CH); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 8.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 8.74$ (ddd, $1 \mathrm{H}, \mathrm{J}_{6^{\prime}, 5^{5}} 4.9$, $\mathrm{J}_{6^{\prime}, 4^{\prime}} 1.9$ and $\mathrm{J}_{6^{\prime}, 3^{\prime \prime}} 1.0$, pyridyl H-6), 8.50 (ddd, $1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 4^{7}} 7.0$ and $\int_{3^{\prime}, 5^{\prime}} \approx \int_{3^{\prime}, 6^{\prime \prime}} 1.0$, pyridyl H-3), 8.07-8.02 (m, 2 H , naphthyl H-4 and H-5), 7.90-7.87 (m, $1 \mathrm{H}, \mathrm{H}-5$), 7.76-7.70 (m, 1 H , pyridyl H-4), 7.69-7.63 (ddd, J $6,58.1, J_{6,7} 6.6$ and $J_{6,8} 1.21 \mathrm{H}, \mathrm{H}-6$), 7.51-7.16 (m, $7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{c}}(68 \mathrm{M} \mathrm{Hz}$, CDCl_{3}) 157.7, 156.9, 154.9, 149.5, 149.2, 137.1, 136.9, 134.0, 130.4, 130.2, 129.3, 128.9, 128.1, 128.0, 127.5, 127.4, 126.8, 125.1, $123.8,123.2,122.5,122.0,117.3,113.9,56.8 ; \mathrm{m} / \mathrm{z}$ (EI) 362 (${ }^{+}$).

3-E thyl-(8-methoxy-1-naphthyl)isoquinoline 22

A mixture of NiCl_{2} (dppf) ($21 \mathrm{mg}, 0.031 \mathrm{mmol}$) and $\mathrm{Zn}(31 \mathrm{mg}$, 0.47 mmol) in THF ($2.5 \mathrm{~cm}^{3}$) was warmed at $50^{\circ} \mathrm{C}$ for 30 min to give a pale yellow-green solution and then 3 -chloro-1-(8-methoxy-1-naphthyl) isoquinoline 8 ($100 \mathrm{mg}, 0.313 \mathrm{mmol}$) was added. Super-Hydride ${ }^{\oplus} \mathrm{LiBHEt}_{3}$ (1.0 m in THF; $0.5 \mathrm{~cm}^{3}$, 0.5 mmol) was added to $\mathrm{Pr}^{\mathrm{i} O H}\left(30 \mathrm{mg}, 38 \mathrm{~mm}^{3}, 1 \mathrm{mmol}\right)$ and when evolution of gas had ceased, the solution was added via cannula to the catalyst-substrate mix. The mixture was heated under reflux for 3 h , filtered and evaporated. The residue was purified by flash chromatography ($\mathrm{SiO}_{2}, 4: 1$ light petroleum$\mathrm{Et}_{2} \mathrm{O}$) to afford 3-ethyl-(8-methoxy-1-naphthyl) isoquinoline as a white solid ($69 \mathrm{mg}, 70 \%$); mp 114-115 ${ }^{\circ} \mathrm{C}$ (Found: C, 84.0; $\mathrm{H}, 6.15 ; \mathrm{N}, 4.4$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 84.3 ; \mathrm{H}, 6.1 ; \mathrm{N}$, $4.4 \%) ; v_{\max }\left(\mathrm{K} \mathrm{Br}^{2} / \mathrm{cm}^{-1} 3045 \mathrm{w}, 2960 \mathrm{w}, 2922 \mathrm{w}\right.$ (CH), 1613m (CN), 1578m, 1553s, 1501w (CC), 1260s (CO), 820s, 767s; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.93$ (dd, $1 \mathrm{H}, \mathrm{J} 8.1$ and $\left.1.2, \mathrm{H}-4^{\prime}\right)$, 7.82-7.77 (m, 1 H, H-5), 7.60-7.52 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.48 (s, 1 $\mathrm{H}, \mathrm{H}-4), 7.45-7.33$ (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.24 (ddd, $1 \mathrm{H}, \mathrm{J} 8.1$, 6.6 and $1.2, \mathrm{H}-7), 6.60-6.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 3.08(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.03\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.41(\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 7.5$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 163.8,156.2,155.4,136.2$,
135.7, 135.5, 129.4, 128.5, 128.2, 127.5, 126.9, 126.2, 126.0, 125.7, 125.5, 121.1, 115.4, 106.3, 55.5, 31.3, 14.6; m/z (EI) $313\left(M^{+}\right)$.

3-(Benzylthio)-1-(8-methoxy-1-naphthyl)isoquinoline 23

A solution of Super-Hydride ${ }^{\circledR}$ ($1.0 \mathrm{~m} \mathrm{LiBHEt}{ }_{3}$ in THF; 1.0 $\mathrm{cm}^{3}, 1.0 \mathrm{mmol}$) was added slowly to dibenzyl disulfide (123 mg , $0.50 \mathrm{mmol})$. When gas evolution had ceased, the solvent was removed in vacuo and 3-chloro-1-(8-methoxy-1-naphthyl)isoquinoline 8 and DMF $\left(5 \mathrm{~cm}^{3}\right)$ were added. The mixture was heated for 6 h at $120^{\circ} \mathrm{C}$ then cooled and diluted with $\mathrm{Et} \mathrm{t}_{2} \mathrm{O}$ and 1 m HCl . Sufficient $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to just dissolve the dark solid, the organic layer was separated and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with $1 \mathrm{mHCl}(\times 5)$, water ($\times 2$), then brine ($\times 2$) and dried over MgSO_{4}. The solution was evaporated and the residue purified by flash chromatography ($\mathrm{SiO}_{2}, 4: 1$ light petroleum$\mathrm{Et}_{2} \mathrm{O}$) to afford $246 \mathrm{mg}(60 \%)$ of product; $\mathrm{mp} 127-129^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3052 \mathrm{w}, 2930 \mathrm{w}$ (CH), 1612m (CN), 1572m, 1547m, 1502m (CC), 1259s (CO), 821s, 771s, 762s, 750s (CH); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.92$ (dd, $1 \mathrm{H}, \mathrm{J} 8.3,1.2$, Ar-H), $7.69-7.64$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.61-7.48 (m, $4 \mathrm{H}, \mathrm{Ar}$-H), 7.44-7.41 (m, 2 H, Ar-H), 7.39-7.30 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.23-7.17 (m, 4 H , Ar-H), 6.72-6.68 (m, 1 H, A r-H), 4.52-4.36 (m, 2 H, CH I^{2}), 3.04 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 164.2,160.0,149.4,138.8$, 136.1, 135.3, 132.4, 132.2, 129.9, 129.0, 128.6, 128.3, 128.2, 127.6, 126.8, 126.6, 126.3, 125.7, 125.5, 124.4, 121.1, 116.9, 106.2, $55.4,35.8 ; \mathrm{m} / \mathrm{z}$ (EI) 407 (M ${ }^{+}$) [Found (HRM S): 407.1344. $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N} O$ S requires 407.1344].

3-C hloro-1-(2-hydroxy-1-naphthyl)isoquinoline 24

A solution of 3-chloro-1-(2-methoxy-1-naphthyl) isoquinoline 6 ($1.00 \mathrm{~g}, 3.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was cooled to $-78^{\circ} \mathrm{C}$ and treated dropwise with $\mathrm{BBr}_{3}\left(1.6 \mathrm{~g}, 0.6 \mathrm{~cm}^{3}, 6.3 \mathrm{mmol}\right)$. The mixture was allowed to warm to room temperature overnight, then quenched with $\mathrm{H}_{2} \mathrm{O}$ and made basic with concentrated ammonia. The organic layer was separated and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with water and brine, then passed through a short plug of SiO_{2} and evaporated to afford the crude product which was washed with a little $\mathrm{Et}_{2} \mathrm{O}$. Yield 0.75 g (78%); mp $212-215{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}\right.$ disc) $/ \mathrm{cm}^{-1} 3100 \mathrm{br} \mathrm{s}(\mathrm{OH}), 3062 \mathrm{~s}(\mathrm{CH})$, 1613 m (CN), $1575 \mathrm{~m}, 1547 \mathrm{~m}, 1503 \mathrm{~m}$ (CC), 1340 s (OH), 1261s (CO), 871s, 818m, $742 \mathrm{~s}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.93-7.90$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$) , 7.88-7.83 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.73 (ddd, $1 \mathrm{H}, \mathrm{J} 8.3$, 6.7 and 1.2, Ar-H), 7.59-7.55 (m, 1 H, Ar-H), 7.39 (ddd, $1 \mathrm{H}, \mathrm{J}$ 8.2, 6.7 and 1.4, Ar-H), 7.35-7.22 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.12-7.08 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$) 159.0, 152.8, 144.0, 138.1, 133.4, 131.4, 130.4, 128.0, 127.95, 127.7, 127.1, 127.05, 126.8, 126.5, 123.5, 122.8, 119.2, 116.8; m/z (EI) 305, 307 (M ${ }^{+}$) [Found (HRMS): 305.0590. $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{CIN} O$ requires 305.0607].
Representative C olon reaction: preparation of $1,1^{\prime}$-diphenyl-3,3'biisoquinoline 25
A mixture of $\mathrm{NiCl}_{2}(13 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{PPh}_{3}(80 \mathrm{mg}, 0.30$ mmol), Zn dust ($100 \mathrm{mg}, 1.5 \mathrm{mmol}$) and Nal ($150 \mathrm{mg}, 1.0$ mmol) in THF ($5 \mathrm{~cm}^{3}$) was warmed to $50^{\circ} \mathrm{C}$ for 30 min , resulting in a blood-red solution. To this was added a solution of 3-chloro-1-phenylisoquinoline 2 ($239 \mathrm{mg}, 1.00 \mathrm{mmol}$) in THF $\left(2.5 \mathrm{~cm}^{3}\right)$ and the mixture heated for a further 3 h . The mixture was quenched with 6 m HCl , made basic with concentrated ammonia solution, filtered and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated. Column chromatography
 diphenyl-3,3'-biisoquinoline 25 as a white solid ($190 \mathrm{mg}, 93 \%$); $\mathrm{mp} 280^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}\right.$ disc)/cm ${ }^{-1} 3050 \mathrm{w}$ (CH), 1612 m (CN), 1560m, 1550m, 1480w (CC), 760m, 750s, 695m (CH); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.00(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4), 8.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8)$, 8.04-8.01 (m, 2 H, H-5), 7.91-7.87 ($\mathrm{m}, 4 \mathrm{H}$, phenyl H-2 and H-6), 7.68 (ddd, 2 H, J 8.1, 6.8 and 1.0, H-6), 7.61-7.59 (m, 4 H,
phenyl H-3 and H-5), 7.64-7.58 (m, 2 H , phenyl $\mathrm{H}-4$), 7.52 (ddd, $2 \mathrm{H}, \mathrm{J} 8.3,6.8$ and $1.2, \mathrm{H}-7$); $\delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$) 160.2 , 149.3, 140.1, 137.9, 130.3, 130.0, 128.7, 128.4, 128.3, 127.6, 127.2, 126.7, 117.1; m/z (EI) 408 (${ }^{+}$) [Found (HRMS): 408.1626. $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{~N}_{2}$ requires 408.1626].

1,1'-Di(4-tolyl)-3,3'-biisoquinoline 26. The same procedure was used as for the preparation of compound 25. Y ield 73\%; $\mathrm{mp} 220^{\circ} \mathrm{C}$ (decomp.); $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$ disc)/ $/ \mathrm{cm}^{-1} 3050 \mathrm{w}, 2920 \mathrm{w}(\mathrm{CH})$, 1612s (CN), 1565m, 1550m, 1480m (CC), 820s, 750s (CH); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4), 8.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8)$, 8.03-8.00 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5$), 7.8-7.77 ($\mathrm{m}, 4 \mathrm{H}$, tolyl H-3 and H-5), 7.67 (ddd, 2 H, J 8.1, 6.8 and 1.0, H-6), 7.51 (ddd, 2 H , J 8.3, 6.8 and 1.2, $\mathrm{H}-7$), 7.43-7.41 ($\mathrm{m}, 4 \mathrm{H}$, tolyl H-2 and H-6), 2.51 ($\mathrm{s}, 6$ $\left.\mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 160.2,149.2,138.6,137.9$, $137.2,130.3,129.9,129.1,128.2,127.7,127.0,126.7,116.9$, 21.5; m/z (EI) $436\left(\mathrm{M}^{+}\right)$[Found (HRMS): 436.1939. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2}$ requires 436.1939].

1,1'-D i(2-tolyl)-3,3'-biisoquinoline 27. The same procedure was used as for the preparation of compound $\mathbf{2 5}$. Y ield 75%; $\mathrm{mp} 200^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}(\mathrm{K} \mathrm{Br} \mathrm{disc}) / \mathrm{cm}^{-1} 3060 \mathrm{w}, 2950 \mathrm{w}(\mathrm{CH})$, $1610 \mathrm{~m}(\mathrm{CN}), 1560 \mathrm{br} \mathrm{m}, 1480 \mathrm{w}(\mathrm{CC}), 750 \mathrm{~s}, 730 \mathrm{~s}(\mathrm{CH})$; $\delta_{\mathrm{H}}(600$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$) $8.94(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4$), 7.98 (d with unresolved splitting, 2 H, J 8.2, H-5), 7.66 (m, $2 \mathrm{H}, \mathrm{H}-8$), 7.64 (ddd, $2 \mathrm{H}, \mathrm{J} 8.0$, 6.7 and 1.2, H-6), 7.48-7.38 (m, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 2.21 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{Ar}-\mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 160.9$, 149.4, 139.5, 137.4, 136.8, 130.5, 130.0, 129.9, 128.5, 128.1, 127.5, 127.4, 127.1, 125.6, 117.2, 20.1; m/z (EI) 436 (M ${ }^{+}$) [Found (HRMS): 436.1939. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2}$ requires 436.1939].

1,1'-Bis(2-methoxyphenyl)-3,3'-biisoquinoline 28. The same procedure was used as for the preparation of compound 25. Yield 81\%; mp $290^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{K} \mathrm{Br} \mathrm{disc}) / \mathrm{cm}^{-1} 3060 \mathrm{w}$, 2930w (CH), 1615m (CN), 1597m, 1575m, 1562m (CC), 1240s (CO), $756 \mathrm{~s}, 752 \mathrm{~s}(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 8.96(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4)$, 7.98-7.93 (m, 2 H , H-8), 7.71-7.66 (m, $2 \mathrm{H}, \mathrm{H}-5$), 7.65-7.58 (m, $2 \mathrm{H}, \mathrm{H}-6$), 7.56-7.49 (m, $4 \mathrm{H}, \mathrm{H}-3^{\prime}$ and H-5'), 7.43 (m, 2 H , $\mathrm{H}-7$), 7.20 (t with unresolved splitting, J $7.5,2 \mathrm{H}, \mathrm{H}-4^{\prime}$), 7.11 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6^{\prime}$), $3.54\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{c}}\left(68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 158.6$, 157.6, 149.8, 137.1, 131.7, 130.0, 129.8, 129.5, 127.9, 127.6, 126.6, 120.9, 117.5, 111.4, 55.6; m/z (EI) $468\left(\mathrm{M}^{+}\right)$[Found (H R M S): 468.1838. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 468.1838].

1,1'-Bis(2-methoxy-1-naphthyl)-3,3'-biisoquinoline 29. The same procedure was used as for the preparation of compound 25. Y ield 73%; mp $280^{\circ} \mathrm{C}$ (decomp.); $v_{\max }\left(\mathrm{K} \mathrm{Br} \mathrm{disc)} / \mathrm{cm}^{-1}\right.$ 3060w, 2939w (CH), 1615m (CN), 1590m, 1560m, 1505m (CC), 1265s, 1250s (CO), 815s, 750s (CH); $\delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}) 8.99$ (br s, 2 H, Ar-H), 8.79-8.11 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.96-7.91 (m, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.62-7.55 (m, 2 H, Ar-H), 7.54-7.49 (m, 2 H, Ar-H), 7.50-7.43 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.41-7.27 (m, $8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{c}}\left[68 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}-\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 161.0$, 157.4, 154.7, 149.8, 136.9, 133.8, 130.2, 129.8, 129.0, 128.4, 127.8, 127.0, 126.8, 126.5, 124.9, 123.5, 117.3, 113.9, $56.5 ; \mathrm{m} / \mathrm{z}$ (EI) $568\left(\mathrm{M}^{+}\right)$[Found (HRMS): $568.2150 . \mathrm{C}_{40} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 568.2151].
$\mathbf{1 , 1} \mathbf{1}^{\prime}$-D i(1-naphthyl)-3,3'-biisoquinoline $\mathbf{3 0}$. The same procedure was used as for the preparation of compound 25. Y ield 82%; mp $270^{\circ} \mathrm{C}$ (decomp.); $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$ disc)/ $/ \mathrm{cm}^{-1} 3050 \mathrm{w}$ (CH), 1612m (CN), 1552m, 1483m (CC), 802m, 792s, 773s, 750s (CH); $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 9.08(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4), 8.09-8.06(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), 8.03-7.99 (m, 2 H, Ar-H), 7.99-7.95 (m, 2 H, Ar-H), 7.76-7.33 (m, $16 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$; m/z (EI) $508(\mathrm{M}+$) [Found (H R M S): 509.1939. $\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{~N}_{2}$ requires 508.1939].

1,1'-Bis(8-methoxy-1-naphthyl)-3,3'-biisoquinoline 31. The same procedure was used as for the preparation of compound 25. Yield 64%; mp $320^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}\right.$ disc) $/ \mathrm{cm}^{-1}$ 3050w, 2960w (CH), 1610m (CN), 1580m, 1560m, 1500m (CC), 1255s (CO), $820 \mathrm{~s}, 765 \mathrm{~s}, 755 \mathrm{~s}(\mathrm{CH}) ; \delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}) 8.86$ (s, 2 H , H-4), 8.03 (dd, 2 H, J 8.3 and 1.5, H-4'), 7.96-7.92 (m, 2 H, H-8), 7.70-7.54 (m, $8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.45 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.8, \mathrm{Ar}-\mathrm{H}$), 7.39-7.25 (m, 4 H, A r-H), 6.74 (m, $2 \mathrm{H}, \mathrm{H}-7^{\prime}$), 3.06 (s, 6 H , $\left.\mathrm{OCH}_{3}\right) ; \delta_{\mathrm{c}}(68 \mathrm{MHz}) 163.8,156.1,148.8,136.1,135.9,135.2$,
129.25, 128.6, 128.4, 127.5, 127.2, 127.1, 126.2, 125.8, 124.6, 121.1, 121.0, 116.5, 106.2, 55.2; m/z (EI) $568\left(\mathrm{M}^{+}\right)$[Found (H R M S): 568.2150. $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 568.2151].

C rystallographic data for 3-chloro-1-(8-methox y-1-naphthyl)isoquinoline 8

Crystals were grown by slow diffusion of hexane into a dichloromethane solution of 8 and were mounted on a glass fibre for the analysis.
Crystal data. The crystal was a colourless plate of approximate dimensions $0.40 \times 0.60 \times 0.50 \mathrm{~mm}, \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{CINO}, \mathrm{M}_{w}=$ 319.8, triclinic, space group $\mathrm{P} \frac{1}{3}, a=11.814(5), b=14.227(5)$, $\mathrm{c}=11.704(4) \AA, \quad a=90.62(3), \quad \beta=115.91(3), \quad \gamma=112.56(3)^{\circ}$, $V=1596(3) \AA^{3}, Z=4, D_{c}=1.33 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=2.40 \mathrm{~cm}^{-1}$, $F(000)=664$.

D ata collection and processing. All measurements were made as previously described ${ }^{22}$ using a R igaku A F C 65 diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. Cell constants and an orientation matrix for data collection were obtained from a least-squares refinement using the setting angles of 25 carefully centred reflections (2θ ranges 16.2-28.7 ${ }^{\circ}$ for cell parameters and orientation matrix determination; ca. 2$57.1^{\circ}$ for full data collection). D ata were collected at $25^{\circ} \mathrm{C}$ using the $\omega-2 \theta$ scan technique. Scans of range $(1.68+0.30 \tan \theta)^{\circ}$ were made at a speed of $8.0^{\circ} \mathrm{min}^{-1}$ (in omega). Stationary background counts were recorded on each side of the reflection.
Of the 8506 reflections collected, 7427 were unique $\left(R_{\text {int }}=0.038\right)$; equivalent reflections were averaged. Of these, 2637 reflections had $\left[\mathrm{F}_{0}{ }^{2}>3 \sigma\left(\mathrm{~F}_{0}{ }^{2}\right)\right]$, where $\sigma\left(\mathrm{F}_{0}{ }^{2}\right)$ was estimated from the counting statistics. ${ }^{22,23}$ Lorentz-polarisation and absorption corrections were applied (transmision factors $0.71,-1.20)$. The intensitites of three standard reflections measured after every 150 reflections showed no greater fluctuations than expected from Poisson statistics.
Structure solution and refinement. The structure was solved by direct methods. ${ }^{24}$ The non-hydrogen atoms were refined either anisotropically or isotropically. Full-matrix least-squares refinement was carried out using the TEXRAY programme set, as previously described. ${ }^{22}$ The unweighted and weighted agree ment factors converged at $R=0.046$ and $R_{w}=0.046$ respectively. The standard deviation of an observation of unit weight was 1.95 . The weighting scheme was based on counting statistics and included a factor $(p=0.02)$ to downweight intense reflections. Plots of $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ vs. $\left|F_{0}\right|$, reflection order in data collection, $\sin \theta / \lambda$, and various classes of indices showed no unusual trends. While the first molecule in the unit cell is well behaved, molecule 2 demonstrates slight thermal flexing about the 1,1'-binaphthyl bond. A ttempts to model this disorder with partial atom fragments produced poorer agreement.
A tomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. C hem. Soc., Perkin Trans. 1, 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/88.

Acknowledgements

We are grateful to the EPSRC for access to their Ultra High Field NM R (Dr Ian H. Sadler, University of Edinburgh) and FAB M ass spectrometry (Dr J. A. Ballantine, U niversity of Wales) services and for a project studentship (A . F.). We thank Johnson M atthey for a generous loan of PdCl_{2} and Professor Brian E. M ann (U niversity of Sheffield) and Dr John M. Brown (U niversity of Oxford) for much advice and help.

R eferences

1 A. Togni and L. M . Venanzi, A gnew. C hem., Int. Ed. Engl., 1994, 33, 497.

2 P. H. J. C arlson, T. K atsuki, V. S. M artin and K . B. Sharpless, J. Org C hem., 1981, 46, 3936.
3 A. J. Bailey, W. P. G riffith, A . J. P. W hite and D. J. Williams, J. C hem. Soc., Chem. Commun., 1994, 1833.
4 C. Eskernazi, G. Balavoine, F. M eunier and H. Rivière, J. Chem. Soc., C hem. Commun., 1985, 111.
5 A. Ford, E. Sinn and S. Woodward, J. O rganomet. Chem., 1995, 493, 215.

6 S. Bennet, S. M. Brown, G. Conole, M. K essler, S. Rowling, E. Sinn and S. Woodward, J. Chem. Soc., D alton Trans., 1995, 367.
7 M . M . Robison, J. A m. Chem. Soc., 1958, 80, 5481.
8 G. Simchen, A gnew. C hem., Int. Ed. Engl., 1966, 5, 663.
9 G. Simchen and W. K rämer, C hem. Ber., 1969, 102, 3666.
10 S. W. Wright, D. L. Hageman and L. D. M cClure, J. Org. Chem., 1994, 59, 6095.
11 J. R. Pedersen, A cta C hem. Scand., Ser. A, 1974, 28, 213.
12 M. Hird, G. W. G ray and K . J. Toyne, M ol. C ryst. Liq. C ryst., 1991, 206, 187.
13 N. W. Alcock, J. M. Brown and D. I. Humes, Tetrahedron: A symmetry, 1993, 4, 743.
14 J.-M. Valk, T. D. W. Claridge and J. M. Brown, Tetrahedron: A symmetry, 1995, 6, 2597.

15 L.-L. G undersen, G. L angli and F. R ise, Tetrahedron Lett., 1995, 36, 1945.

16 I. M angalagiu, T. Beneche and K. U ndheim, Tetrahedron Lett., 1996, 37, 1309.
17 N. M iyaura, T. Ishiyama, H. Sasaki, M. Ishikawa, M. Satoh and A. Suzuki, J. Am. Chem. Soc., 1989, 111, 314.

18 M. K ranz, T. Clark and P. Von R ague, J. Org. Chem., 1993, 58, 3317. 19 I. Colon and D. R. K elsey, J. Org. C hem., 1986, 51, 2627.
20 M. I yoda, H. Otsuka, K. Sato, N. N isato and M. Oda, Bull. Chem. Soc. J pn., 1990, 63, 80.
21 Y. Y amamoto and A. Y anagi, C hem. P harm. Bull., 1982, 30, 1731.
22 J. R. Blackhouse, H. M. Lowe, E. Sinn, S. Suzuki and S. Woodward, J. Chem. Soc., D alton Trans., 1995, 1489.

23 P. W. R. Corfield, R. J. D oedens and J. A . Ibers, Inorg. C hem., 1967, 6, 197.
24 C. J. Gilmore, J. A ppl. Crystallogr., 1984, 17, 42.

Paper 6/05827B
Received 21st August 1996
A ccepted 6th N ovember 1996

